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Abstract
We use Noether symmetries to discuss the source of the Ermakov–Lewis
invariant and show that it comes from a generalized symmetry. This symmetry
is a Lie symmetry of the invariant. Furthermore, we use Liouville’s theorem
to construct two integrals of the Ermakov system and compute the Poisson
brackets of all the integrals of the system to see which ones are in involution
with each other. Interesting observations are made.

PACS numbers: 02.30.Hq, 02.30.Ik, 02.20.−a, 02.20.Sv

1. Introduction

There has been considerable study of the equation for the harmonic oscillator with variable
frequency, namely,

q̈ + ω2(t)q = 0 (1.1)

where the overdot represents differentiation with respect to time (cf [1] and the references
cited therein). The problem of the time-dependent oscillator was first solved by Ermakov [2].
Ermakov obtained an invariant/integral for (1.1) by introducing the auxilary equation

ρ̈ + ω2(t)ρ = ρ−3 (1.2)

eliminating the ω2 terms, multiplying by the integrating factor ρq̇ − ρ̇q and integrating the
resulting differential equation. Equation (1.2) is usually called the Ermakov–Pinney equation
since Pinney provided the solution, some years after Ermakov’s derivation of the integral [3].
The first integral obtained by Ermakov is

I = 1
2 [(ρq̇ − ρ̇q)2 + (q/ρ)2] (1.3)

and is called the Ermakov–Lewis invariant after Lewis ‘revisited’ it in 1966 [4, 5]. The results
of Ermakov were unknown in the western world for many decades.
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Generalized Ermakov systems of the form

ẍ + ω2(t)x = x−3f (y/x) ÿ + ω2(t)y = y−3g(y/x) (1.4)

where f and g are arbitrary functions of their arguments, were popularized in the western
literature by Ray and Reid [6]. A first integral of the system in (1.4) is found by eliminating
ω2 between the two and multiplying by the integrating factor xẏ − ẋy. The first integral is [6]

I = 1

2
(xẏ − ẋy)2 +

∫ y/x

[uf (u) − u−3g(u)] du. (1.5)

Leach [7] showed that the presence of the ω2 terms in (1.4) is misleading in that it implies a
generality that is not there and further used the transformation

T = cot

(∫
ρ−2 dt

)
X = ρ−1x cosec T Y = ρ−1y cosec T

where ρ(t) is any solution of (1.2), to transform (1.4) to

Ẍ = X−3f (Y/X) Ÿ = Y −3g(Y/X).

It is well known that ω2 can be replaced by anything (as long as it is continuous and
differentiable) (cf [6, 8, 9]) and those terms can still be eliminated to give

xÿ − ẍy = x/y3g(y/x) − y/x3f (y/x). (1.6)

Naturally the simplifying transformation fails to work for ω2, not ω2(t). The Lie algebra of
the Ermakov system (1.4) was found to be sl(2, R) [7]. There have been a number of studies
of Ermakov invariants in two dimensions, in particular, the quantum mechanically oriented
works of Wollenberg [10] and Ray [9], extensions to velocity-dependent potentials [11] and
time-dependent potentials [12].

In the case of the superintegrability for a classical system the classical Noether symmetries
give rise to Lie symmetries (maybe generalized) of the corresponding quantal system. One
would expect that a quantal superintegrable system would correspond to a classical system with
a full quarter of Noether integrals. We recall that in the case, for example, of the N-dimensional
harmonic oscillator there are N2 first integrals comprising 1

2N(N − 1) components of the
angular momentum and 1

2N(N + 1) components of the Jauch–Hill–Fradkin tensor [13–15]
which makes the N-dimensional harmonic oscillator superintegrable for N � 1 according to
[16]. In the context of the results reported in this paper we are interested in studying system
(1.4) from the Noetherian point of view. To our knowledge this is the first time the Noether
symmetries are being considered to discuss the source of the Ermakov–Lewis invariant.

2. Noether’s theorem

Noether’s theorem, which was enunciated by Emmy Noether in 1918 [19], is used to determine
the Noether symmetries and associated first integrals. The theorem is applicable to systems
with equations which are derivable from a Lagrangian. We allow for both point and generalized
Noether symmetries. Noether’s theorem which relates the invariance of the action integral
under infinitesimal transformations with first integrals of the associated Euler–Lagrange
equation [19] is

Theorem 2.1. For a first order classical Lagrangian, L(t, x, ẋ) with (
.
) denoting d/dt , the

action integral

A =
∫ t2

t1

L(t, x, ẋ) dt (2.1)
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is invariant under the infinitesimal transformation generated by the differential operator,

G = T ∂t + Xi∂xi
(2.2)

if there exists a function, f , such that

ḟ = T
∂L

∂t
+ Xi

∂L

∂xi

+ (Ẋi − ẋi Ṫ )
∂L

∂ẋi

+ Ṫ L (2.3)

in which summation over repeated indices is implied, and the Euler–Lagrange equation has a
first integral given by

I = f −
[
T L + (Xi − ẋiT )

∂L

∂ẋi

]
. (2.4)

The function, f , is commonly referred to as a gauge term [18], and its appearance in the
expression is due to the contribution from the boundary terms in the general formulation of
the theorem as presented by Noether [19].

In the original version of Noether’s theorem [19], generalized symmetries, in which the
coefficient functions depend upon ẋi as well as t and xi , were used. However, many authors over
the years [27–29] have inclined towards the use of point symmetries in which the coefficient
functions are allowed to depend upon t and xi only. While the use of point symmetries
simplifies the calculations, there is the possibility of missing some integral (invariant) through
this restriction. A typical example is that of the Laplace–Runge–Lenz vector which is given
by a generalized symmetry linear in the components of the velocity [20].

The differential operator (2.2) that leaves the action integral (2.1) invariant is called a
Noether symmetry. It is well known that a Noether symmetry of the corresponding Euler–
Lagrange equation is commonly called a Lie symmetry even though it may in fact be a
generalized symmetry [31, p 272]. We use symmetries to obtain first integrals.

One of the symbolic manipulation codes for the computation of Lie symmetries such as
PROGRAM LIE [21], can be used to ease the computations by the calculation of Lie symmetries
of the associated Euler–Lagrange equation since all Noether symmetries are Lie symmetries
of the Euler–Lagrange equation [31, p 252]. The converse is not true unless one admits a
boundary term which may possibly be nonlocal due to the integration [19].

When generalized symmetries are used in Noether’s theorem, the transformations can be
restricted to one of the dependent variables only. This alternative route to Noether’s theorem
was presented by Boyer in 1967 [22] and has been investigated by Sarlet and Cantrijn in
their later review of Noether’s theorem [18]. This reduces by one the number of coefficient
functions to be determined. This follows from the theorem

Theorem 2.2. If a first order Lagrangian is nondegenerate, differentiation of (2.4) with respect
to ẋj yields

∂I

∂ẋj

= −(Xi − ẋiT )
∂2L

∂ẋi∂ẋj

. (2.5)

Remarks.

• As far as the integral is concerned, there is no loss of generality if the coefficient functions

T̄ = 0 and X̄i = Xi − ẋiT (2.6)

are introduced. The choice made in (2.6) is not unique. This means that the Noether
symmetry is not unique.
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• We also observe from (2.5) that the velocity dependence of the first integral is specified
by the Noether symmetry. This means that, when there is a restriction on the velocity
dependence of the symmetry, the class of first integrals (invariants) is restricted. In contrast
to the Lie approach, there is no direct connection between the velocity dependence of a
Lie symmetry and the velocity dependence of the associated first integrals (invariants).

• While Noether’s theorem requires a symmetry linear in the velocity to obtain an integral
such as the Laplace–Runge–Lenz vector, the Lie approach gives the vector from the ∂t

symmetry [23]. However, the calculations for the first integrals using the Lie approach
can be much more complex as can be seen by the Lie treatment in [24].

3. The Noetherian symmetries

The general form of a two-dimensional first order autonomous Lagrangian is

L = 1
2

(
ẋ2

1 + ẋ2
2

) − V (x1, x2). (3.1)

The Lagrangian (3.1) has a Noether symmetry,

G = T ∂t + X1∂x1 + X2∂x2 (3.2)

if

ḟ = T
∂L

∂t
+ X1

∂L

∂x1
+ X2

∂L

∂x2
+ (Ẋ1 − ẋ1Ṫ )

∂L

∂ẋ1
+ (Ẋ2 − ẋ2Ṫ )

∂L

∂ẋ2
+ L

∂T

∂t
. (3.3)

Here T ,X1,X2 and f are functions of t, x1, x2. The overdot in (3.3) denotes the operator of
total differentiation

∂t + ẋ1∂x1 + ẋ2∂x2 . (3.4)

Expansion of (3.3) using (3.4) and separation by powers of ẋi , i = 1, 2, lead to

T = T (t) (3.5)

X1 = 1
2 Ṫ x1 + c1x2 + b1(t) (3.6)

X2 = 1
2 Ṫ x2 − c1x1 + b2(t) (3.7)

f = 1
4 T̈

(
x2

1 + x2
2

)
+ ḃ1(t)x1 + ḃ2(t)x2 + d(t) (3.8)

and the equation to be satisfied by the potential V (x1, x2) is

∂f

∂t
= −X1Vx1 − X2Vx2 − V Ṫ . (3.9)

We use (3.5)–(3.8) in the equation for the potential (3.9) to obtain

(
1
2 Ṫ x1 + c1x2 + b1

)
Vx1 +

(
1
2 Ṫ x2 − c1x1 + b2

)
Vx2 + Ṫ V + 1

4

...
T

(
x2

1 + x2
2

)
+ b̈1x1 + b̈2x2 + ḋ = 0 (3.10)

where c1 is a constant. Since we require (3.10) to be independent of t, we take a sufficient
number of derivatives with respect to t of the equation to arrive at a set of equations which
can be regarded as an algebraic system for the potential and its derivatives. If we differentiate
(3.10) we obtain(

1
2 T̈ x1 + ḃ1

)
Vx1 +

(
1
2 T̈ x2 + ḃ2

)
Vx2 + T̈ V + 1

4

....
T

(
x2

1 + x2
2

)
+

...
b 1 x1 +

...
b 2 x2 + d̈ = 0. (3.11)

Two cases arise from (3.11), namely, T̈ �= 0 and T̈ = 0. We deal with the case for which
T̈ �= 0. The detailed treatment for all the other cases was done by Sophocleous et al [32].
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If T̈ �= 0 in (3.11), we have(
1

2
x1 +

ḃ1

T̈

)
Vx1 +

(
1

2
x2 +

ḃ2

T̈

)
Vx2 + V +

1

4

....
T

T̈

(
x2

1 + x2
2

)
+

...
b 1

T̈
x1 +

...
b 2

T̈
x2 +

d̈

T̈
= 0. (3.12)

We again differentiate (3.12) to obtain an equation in the form

λ1Vx1 + λ2Vx2 = λ3
(
x2

1 + x2
2

)
+ λ4x1 + λ5x2 + λ6 (3.13)

where the λi , i = 1, . . . , 6, are defined as

λ1 =
(

ḃ1

T̈

) ˙

λ2 =
(

ḃ2

T̈

) ˙

λ3 = −1

4

( ....
T

T̈

) ˙

λ4 =
( ...

b 1

T̈

) ˙

λ5 =
( ...

b 2

T̈

) ˙

λ6 =
(

d̈

T̈

) ˙

.

To illustrate the point we wish to make we consider the case for which λ1 = λ2 = 0 in (3.13).
This implies that

ḃ1 = µ1T̈ ḃ2 = µ2T̈ (3.14)

where the µ1 and µ2 are constants. Then (3.11) becomes

T̈
(

1
2x1 + µ1

)
Vx1 + T̈

(
1
2x2 + µ2

)
Vx2 + T̈ V + 1

4

....
T

(
x2

1 + x2
2 + 4µ1x1 + 4µ2x2

)
+ d̈ = 0.

(3.15)

There is no loss in generality in putting µ1 = µ2 = 0 (translations in x1 and x2) to obtain
b1 = c1 and b2 = c2 from (3.14) and (3.15) becomes

x1Vx1 + x2Vx2 + 2V +
1

2

....
T

T̈

(
x2

1 + x2
2

)
+

2d̈

T̈
= 0. (3.16)

Note that c1 and c2 are constants. Integrating (3.16) we obtain

V = −1

4
k

(
x2

1 + x2
2

) − 1

2
j +

1

x2
1

�

(
x2

x1

)
(3.17)

where k = 1
2

....
T

T̈
and j = 2d̈

T̈
. Since 1

2j is a constant it may be neglected and makes no
difference to the dynamics to have V + const, i.e. (3.17) can then be written as

V = 1

2
λ2 (

x2
1 + x2

2

)
+

1

x2
1

�

(
x2

x1

)
(3.18)

where λ2 = −k/2. The implications of this are that

d = c5t + c6 T̈ + 4λT = µ3t + c4. (3.19)

Since the identity (3.10) needs to be satisfied, we conclude that c2 = c3 = c5 = µ3 = 0. If
we have c1 = 0,� arbitrary, then

V = 1

2
λ

(
x2

1 + x2
2

)
+

1

x2
1

�

(
x2

x1

)

T = T (t) T̈ + 4λT = c4

X1 = 1
2 Ṫ x1

X2 = 1
2 Ṫ x2.

(3.20)

Note that we can put w2 = λ = 0. In this case the point symmetries are

G1 = ∂t G2 = 2t∂t + x1∂x1 + x2∂x2 G3 = t2∂t + tx1∂x1 + tx2∂x2 (3.21)
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with bracket relations

[G1,G2] = 2G1 [G1,G3] = G2 [G2,G3] = 2G3 (3.22)

which is the sl(2, R) Lie algebra as pointed out by Leach [7]. We remark here that the number
of Noether point symmetries is exactly the same as that of Lie point symmetries in the case of
the two-dimensional Ermakov potential. The point symmetries in polar form corresponding
to the potential in (3.20) with ω2 = λ �= 0 can be written as

G1 = ∂t G2 = cos 2ωt∂t − r sin 2ωt∂r G3 = sin 2ωt∂t + r cos 2ωt∂r (3.23)

and their bracket relations remain the same as those in (3.22).

4. The Noetherian integrals

In this section we study the Noetherian integrals. We note that the integrals corresponding to
(3.23) are

I1 = 1

2

(
p2

r + ω2r2 +
p2

θ − �

r2

)

I2 = rpr cos 2ωt − 1

2

(
p2

r − ω2r2 +
p2

θ − �

r2

)
sin 2ωt (4.1)

I3 = rpr sin 2ωt +
1

2

(
p2

r − ω2r2 +
p2

θ − �

r2

)
cos 2ωt

where r2 = x2
1 + x2

2, pr = ṙ and pθ = r2θ̇ .
We consider the Lagrangian in polar form, i.e.

L = 1

2

[
ṙ2 + r2θ̇2 − ω2r2 +

1

r2
�(θ)

]
(4.2)

where we can rescale ωt to t and absorb the scale factor into � so that we can consider the
essential Lagrangian

L = 1

2

[
ṙ2 + r2θ̇2 − r2 +

1

r2
�(θ)

]
. (4.3)

The Ermakov–Lewis invariant is obtained from (4.3) as follows. The Hamiltonian
corresponding to (4.3) is in accordance with the symmetry, ∂t ,

H = 1

2

(
ṙ2 + r2θ̇2 + r2 − 1

r2
�(θ)

)

= 1

2

(
p2

r + r2 +
p2

θ − �(θ)

r2

)
(4.4)

where the canonical momenta are pr = ṙ and pθ = r2θ̇ . The angular component of the
Hamiltonian (4.4) is given by

J = p2
θ − �(θ)

= (r2θ̇ )2 − �(θ) (4.5)

and is the Ermakov–Lewis invariant for the Hamiltonian system (4.4). A natural question to
ask is from which symmetry does J come. We know from the one-to-one correspondence
of Noether’s theorem between the integrals and the symmetries that the symmetries of (3.23)
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yield three separate first integrals, and (4.5) is not one of them. The integral corresponding to
G1 = ∂t with ωt rescaled to t is, as we noted above,

I1 = 1

2

(
p2

r + r2 +
p2

θ − �

r2

)
(4.6)

which is just the energy of the system. If

�± = exp(±2it)(∂t ± ir∂r) (4.7)

are used instead of G2 and G3 by making the combinations G2 ± G3, then the first extension
of (4.7) in (3.3) and integration with respect to time give

f = −r2 exp(±2it) + h (4.8)

where h is just an additive constant and is ignorable. The first integrals associated with the
symmetry (4.7) follow from (2.4) as

I± = 1

2
exp(±2it)

[(
ṙ2 + r2θ̇2 − r2 − 1

r2
�(θ)

)
± 2irṙ

]
. (4.9)

We separate (4.9) into the real part, Ir , and imaginary part, Ii , namely,

Ir = 1

2

(
ṙ2 + r2θ̇2 − r2 − 1

r2
�(θ)

)
cos 2t + rṙ sin 2t (4.10)

Ii = 1

2

(
ṙ2 + r2θ̇2 − r2 − 1

r2
�(θ)

)
sin 2t − rṙ cos 2t . (4.11)

The combination of the integrals in (4.9) together with I1 gives

I 2
1 − I+I− = r4θ̇2 − �

= J (4.12)

which is the Ermakov–Lewis invariant.

Remark. The radial component of the angular Euler–Lagrange equation for the two-
dimensional system (4.3) is given by

r̈ + r = r4θ̇2 − �

r3
. (4.13)

We rewrite (4.13) in terms of J to obtain

r̈ + r = J

r3
(4.14)

where J is the well known Ermakov–Lewis invariant, which is the radial component of some
two-dimensional system. We note that (4.14) is the form of the equation considered in the
paper by Eliezer and Gray [17]. The structure is exactly the same. The interesting point is that
it is a generalization of the angular momentum and J is the integral of the angular equation. It
is conceivable for J to be negative and this is in contrast to the case where we have the angular
momentum, say h2, in (4.14) which is always non-negative. Since J̇ = 0 we have

r3 ...
r + 3r2ṙ r̈ + 4r3ṙ = 0. (4.15)

If we put s = r2 in (4.15), we obtain
...
s + 4ṡ = 0 (4.16)

which is the third order equation of maximal symmetry and of course the solution set for
(4.16) is exactly what we need for the solution of the Ermakov–Pinney equation (4.14).
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The solution of the radial component of the two-dimensional Ermakov system is a solution
of a third order differential equation (4.15). Regarding the set of constants, A,B and C, as
rectangular coordinates in three-dimensional parameter space we see that for positive J the
constraint J = A2 − B2 − C2 specifies a hyperboloid of one sheet and for J negative the
constraint −J = A2 − B2 − C2 specifies a hyperboloid of two sheets. The value of J is
determined by the initial conditions of the third order equation (4.15).

Proposition 1. The integral J = r4θ̇2 − �, which is the Ermakov–Lewis invariant, comes
from a generalized symmetry � = τ∂t + η∂r + ζ ∂θ , where τ, η and ζ are functions of t, r and
θ and derivatives of r and θ .

In general we have � = τ∂t + η∂r + ζ ∂θ . Using theorem 2.2 we find that

∂J

∂ṙ
= 0 = −(η − ṙτ )

∂J

∂θ̇
= 2r2θ̇ = −(ζ − θ̇ τ )r2 (4.17)

where the symmetry of J is �. The system of equations in (4.17) suggests several possibilities.
We consider the following examples.

Case 1. If τ = 0 and η = 0, then a symmetry of J is

�1 = 2r2θ̇ ∂θ . (4.18)

Case 2. If ζ = 0 and τ = r2, then η = r2ṙ and the symmetry of J is

�2 = r2(∂t + ṙ∂r ). (4.19)

We can verify that (4.18) is indeed a symmetry of J . Using (4.18) we have

ḟ = �
[1]
1 L + τ̇L. (4.20)

When we take the Euler–Lagrange equation into account we find f = (r2θ̇ )2 + � so that
J = −((r2θ̇ )2 − �). A natural form to take for the Noether symmetry for J is L∂θ , where
L = r2θ̇ is the magnitude of the angular momentum. For � to be a constant the generalized
symmetry reduces to the point symmetry ∂θ corresponding to the ignorability of the generalized
coordinate θ .

Proposition 2. The symmetry � = τ∂t + η∂r + ζ ∂θ that gives the integral J = r4θ̇2 − � is
also a Lie symmetry of the integral.

Proof. We put η = τ ṙ and using theorem 2.2 we have that ζ = τ̇ θ̇ − r2θ̇ . The first extension
of the symmetry � becomes

�[1] = τ∂t + τ ṙ∂r + (τ̇ θ̇ − r2θ̇ )∂θ + (τ θ̈ − r2θ̈ − 2rṙθ̇ )∂θ̇ . (4.21)

Therefore

�[1]J = �[1](r4θ̇2 − �)

= 2r3θ̇ (τ − r2θ̇ )

(
rθ̈ + 2ṙ θ̇ − 1

2

�′

r3

)
(4.22)

= 0

where the right-hand side is equal to zero since the angular component of the Euler–Lagrange
equation for the Lagrangian (4.3) is given by rθ̈ + 2ṙ θ̇ − 1

2�′/r3 = 0. �
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5. Application of Liouville’s theorem to determine further integrals

We state Liouville’s theorem [35, p 165] which was established for systems with any number
of degrees of freedom when half of the integrals/invariants are known.

Theorem 5.1. If n distinct integrals

�r(q1, q2, . . . , qn, p1, . . . , pn, t) = ar (r = 1, 2, . . . , n) (5.1)

where (a1, a2, . . . , an) are arbitrary constants, are known for the dynamical system

dqr

dt
= ∂H

∂pr

dpr

dt
= −∂H

∂qr

(r = 1, 2, . . . , n) (5.2)

where H is any given function of (q1, q2, . . . , qn, p1, . . . , pn, t), and, if the functions
(�1,�2, . . . ,�n) are in involution, then on solving these integrals for (p1, p2, . . . , pn) to
obtain them in the form

pr = fr(q1, q2, . . . , qn, a1, a2, . . . , an, t) (r = 1, 2, . . . , n) (5.3)

and substituting (f1, f2, . . . , fn) respectively for (p1, p2, . . . , pn) in the expression

p1 dq1 + p2 dq2 + · · · + pn dqn − H dt (5.4)

the latter expression becomes a perfect differential. If we denote it by

dW(q1, q2, . . . , qn, a1, a2, . . . , an, t) (5.5)

the remaining integrals of the system are

br = ∂W

∂ar

(r = 1, 2, . . . , n) (5.6)

where (b1, b2, . . . , bn) are arbitrary constants.

We apply Liouville’s theorem to the integrals I1 and J and use Liouville integrability to explain
why the two-dimensional system, (3.23), is integrable.

Proposition 3. The integrals I1 in (4.6) and J are in involution with each other.

Proof. The Poisson bracket [35, p 299] of I1 and J is

[I1, J ]PB = [
1
2

(
p2

r + r2 + p2
θ

/
r2 − �/r2

)
, p2

θ − �
]

= 0 (5.7)

where we defined pθ = r2θ̇ and pr = ṙ above. It follows from (5.7) that the integrals are in
involution. �

We use the two integrals I1 and J to step through the statement of Liouville’s theorem. If
two distinct integrals I1 and J are written so that

I1 = 1
2

(
p2

r + r2 + p2
θ

/
r2 − �/r2) (5.8)

J = p2
θ − � (5.9)

we can express them in terms of pr and pθ so that we have

pr =
√

2I1 − r2 − J/r2 (5.10)

pθ =
√

J + �. (5.11)
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Then we have that the perfect differential, which we denote by dW , is given by

dW = pr dr + pθ dθ − I1 dt

=
√

2I1 − r2 − J/r2 dr +
√

J + � dθ − I1 dt (5.12)

so that

W =
∫ √

2I1 − r2 − J/r2 dr +
∫ √

J + � dθ − I1t . (5.13)

The remaining integrals are then given by

α = ∂W

∂I1
and β = ∂W

∂J
. (5.14)

From (5.13) and (5.14) we have

α = 1

2
arcsin

r2 − I1√
I 2

1 − J

− t (5.15)

and

β = −1

2

∫
1

r2

dr√
2I1 − r2 − J/r2

+
1

2

∫
dθ√

J + �
. (5.16)

Properties of the integrals
We can rewrite α in (5.15) as

ᾱ = −2α = arcsin
I1 − r2√
I 2

1 − J

+ 2t (5.17)

and on taking sines on both sides of (5.17) obtain

(
I 2

1 − J
)1/2

sin(−2α) = (
I1 − r2

)
cos 2t +

√√√√1 −
(
I1 − r2

)2

I 2
1 − J

sin 2t . (5.18)

When we substitute for I1 and J and simplify the right-hand side of (5.18), we obtain

D = 1

2

[
ṙ2 − r2 +

r4θ̇2 − �

r2

]
cos 2t + rṙ sin 2t (5.19)

where D = (
I 2

1 − J
)1/2

sin(−2α) and is the same as Ir in (4.10). If we take cosines on both
sides of (5.17), we obtain

E = (
I 2

1 − J
) 1

2 cos(−2α)

= 1

2

(
ṙ2 − r2 +

r4θ̇2 − �

r2

)
sin 2t − rṙ cos 2t (5.20)

that is, the standard representation of the sl(2, R) integrals of the two-dimensional Ermakov
system gives the same integral (the ᾱ above) with one taken as a sine and the other taken as a
cosine. This is to be expected since when we take Poisson brackets we have [I2, I1]PB = I3

and [I3, I1]PB = −I2 (equally [I±, I1]PB = ±2iI±). The Poisson brackets of these integrals
simply reflect the algebraic properties of the underlying point symmetries [G1,G2] = G3.
The Poisson brackets of the integrals are listed as follows:

[I1, J ]PB = 0 [I1, I±]PB = ∓2 iI± [I1, ᾱ]PB = 2
[I+, I−]PB = 2 iI1 [ᾱ, J ]PB = 0 [J, I±]PB = 0
[β, I1]PB = 0 [β, J ]PB = 1

2 .
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Note that the integrals in involution with each other are indicated by their zero Poisson bracket.
For example, J and I± are in involution with each other, since [J, I±] = 0. Here we also recall
Poisson’s theorem which states that the Poisson bracket of two first integrals of a Hamiltonian
system is again a first integral [36, p 273]. This is the case for all the integrals that are not in
involution with each other. We note that certain of these are quite trivial.

6. The symmetries of ᾱ and β

In this section we use theorem 2.2 to determine the Noether symmetries of the two integrals
ᾱ and β. Using theorem 2.2 the symmetries for ᾱ are determined from the two systems of
equations given by

∂ᾱ

∂ṙ
= I1r

2 − J

r
(
I 2

1 − J
) = (ηr − τ ṙ)

(6.1)
∂ᾱ

∂θ̇
= r3ṙ θ̇

I 2
1 − J

= (ηθ − τ θ̇)r2.

An obvious choice of η in (6.1) is ηθ = 0. This gives the symmetry

�ᾱ = − rṙ

I 2
1 − J

∂t +
I1r

2 − J − r2ṙ2

r
(
I 2

1 − J
) ∂r (6.2)

which definitely has a non-obvious velocity dependence due to the presence of ṙ and θ̇ in I1

and J . We can redefine �ᾱ as

�̄ᾱ = − (
I 2

1 − J
)
�ᾱ

= rṙ∂t + 1
2 (rṙ2 + r3θ̇2 − r3 − �/r)∂r (6.3)

to see the not quite so less non-obvious velocity dependence. Similarly, the symmetries for β

are found from the equations

∂β

∂ṙ
= 1

2
(
I 2

1 − J
)1/2 arctanh

r 2 − I1(
I2
1 − J

)1/2 = (ηr − τ ṙ)

∂β

∂θ̇
= −1

2

∫
r2dθ

J + �
= (ηθ − τ θ̇)r2. (6.4)

If we put τ = 0, then

Gβ =

 1

2
√

I 2
1 − J

arctanh
r 2 − I1√

I2
1 − J


 ∂r −

(
1

2r2

∫
r2 dθ

J + �

)
∂θ . (6.5)

The Noether symmetry of β is so complicated that one would not like to guess a structure for a
generalized symmetry which can give that type of integral. The ansatz would not be obvious.
We remark that both integrals ᾱ and β come from the generalized symmetries and the velocity
dependence of these symmetries is not obvious.

7. Conclusion

We have used Noether’s theorem to show that the Ermakov–Lewis invariant comes from a
generalized symmetry � = τ∂t + η∂r + ζ ∂θ . The symmetry � is a Lie symmetry of the
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integral. This differs from the Lie case in which the integral comes from the point symmetries.
Furthermore we used Liouville’s theorem to construct two integrals of the two-dimensional
system, ᾱ and β. The symmetries of the integrals ᾱ and β were found to be generalized
symmetries as one would expect and it is unlikely that one would propose a correct ansatz for
what the structure of a generalized symmetry would be. In addition to this we showed that
the Poisson bracket of ᾱ and J was equal to zero, i.e. ᾱ and J are in involution with each
other. Furthermore, we observe that the standard representation of the sl(2, R) integrals of the
two-dimensional Ermakov system gives the same integral as the one obtained when the sine or
cosine of −2α is taken. The Poisson bracket of β and J gives a 1/2. The symmetry associated
with β is more complicated. We note that the properties of the Poisson brackets [I2, I1]PB = I3

and [I3, I1]PB = −I2 (equally [I±, I1]PB = ∓I±) simply reflect the algebraic properties of the
underlying point symmetries [G1,G2] = 2G3. We further note that J is in involution with I2

and I3, respectively, since the Poisson brackets are [J, I2]PB = 0 and [J, I3]PB = 0.
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